Glycosylation regulates turnover of cyclooxygenase-2

Mary B. Sevignya, Chai-Fei Lib, Monika Alasa,b, Millie Hughes-Fulfordb,c,*

a Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA
b Laboratory of Cell Growth, Northern California Institute for Research and Education, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
c University of California, San Francisco, CA 94121, USA

Received 16 July 2006; revised 15 October 2006; accepted 31 October 2006

Available online 9 November 2006

Edited by Judit Ovádi

Abstract Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in the prostanooid biosynthesis pathway, converting arachidonic acid into prostaglandin H\textsubscript{2}. COX-2 exists as 72 and 74 kDa glycoforms, the latter resulting from an additional oligosaccharide chain at residue Asn580. In this study, Asn580 was mutated to determine the biological significance of this variable glycosylation. COS-1 cells transfected with the mutant gene were unable to express the 74 kDa glycoform and were found to accumulate more COX-2 protein and have five times greater COX-2 activity than cells expressing both glycoforms. Thus, COX-2 turnover appears to depend upon glycosylation of the 72 kDa glycoform.

Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Keywords: Cyclooxygenase-2; Post-translational regulation; Enzyme turnover; Glycosylation; Glycoforms; Site-directed mutagenesis

1. Introduction

Prostanoids, which consist of prostaglandins and thromboxanes, represent a family of lipid-soluble, bioactive compounds which have been associated with a multitude of physiological processes and pathophysiological conditions that include: platelet aggregation, bone metabolism, ovulation, inflammation, ischemia, and various cancers (reviewed in [1]). The rate-limiting step in the prostanooid synthesis pathway is catalyzed by the integral membrane protein cyclooxygenase (COX), also known as prostaglandin H\textsubscript{2} (PGH\textsubscript{2}) synthase [2,3], which is localized to the endoplasmic reticulum (ER) and nuclear envelope [4]. COX is bifunctional, converting arachidonic acid (AA), an omega-6 fatty acid, to the precursor prostaglandin G\textsubscript{2} (PGG\textsubscript{2}) and subsequently converting PGG\textsubscript{2} to the precursor PGH\textsubscript{2} via cyclooxygenase and peroxidase activities, respectively. Three isoforms of COX have been found – the constitutively expressed COX-1 [5–7]; COX-2, which can be inducible or constitutive, depending on the tissue [1,8–10]; and the constitutively expressed COX-3, which is believed to be a splice variant of COX-1 [11]. Although COX-1 is considered the housekeeping enzyme expressed in nearly all tissues, COX-2 is generally perceived to be involved in pathological conditions, such as inflammation and cancer [1,12,13]. In particular, we have found that the presence of AA in human prostate cancer cells up-regulates COX-2 mRNA and protein expression [14,15] – specifically, the 72 kDa glycoform [16]. However, COX-2 is also involved with normal physiological processes such as neurotransmission and synaptic activity [17,18], maintaining normal renal functions [19], providing vascular protection [20], regulating cerebral blood flow [21], and facilitating pregnancy [22].

The COX-2 sequence contains five potential N-glycosylation sites, three of which are always glycosylated, one (Asn580 in human and mouse) that is glycosylated \(<50\%\text{ of the time, and one that is never glycosylated [23]. The carbohydrate moieties at each site are believed to be high-mannose chains [24,25]. The variability of glycosylation at Asn580 leads to the production of two distinct glycoforms of 72 and 74 kDa. Previous studies have examined this variable glycosylation at the Asn580 site, but none were able to determine the purpose or biological significance of the two COX-2 glycoforms [23,25].

In this study, we strive to determine the purpose of glycosylation at Asn580 – specifically, if and how this additional glycosylation affects COX-2 activity. We found that glycosylation at Asn580 does indeed affect total COX-2 activity by controlling the enzyme’s turnover.

2. Materials and methods

2.1. Materials

The human COX-2 cDNA in plasmid pcDNA3 was generously provided by Dr. Timothy Hla from the University of Connecticut, USA. The COS-1 cell line was obtained from the UCSF Cell Culture Facility (San Francisco, CA, USA). QIAprep Spin Miniprep kit, HiSpeed Plasmid Maxi kit, and the primers used for site-directed mutagenesis \((5'-\text{TCATTAAACACGTCCACCACTCCAGGCAGTCCTTCCGGTCCTCCG}-3'\) and \(5'-\text{GAGCGGGAAGAACTTGCCTGGATGGTGACTGTTT}-3'\) were purchased from QIAGEN (Valencia, CA, USA). The PfuUltra HF DNA polymerase was purchased from Stratagene (La Jolla, CA, USA). The transfection reagent FuGENE 6 was purchased from Roche Applied Science (Indianapolis, IN, USA). One Shot TOP10 Competent Escherichia coli cells, pre-made 4–12% Bis–
Tris NuPAGE gels, and the NuPAGE system were obtained from Invitrogen (Carlsbad, CA, USA). The anti-human COX-2 polyclonal antibody, the prostaglandin E2 (PGE2) EIA kit – Monoclonal and peroxide-free AA were purchased from Cayman Chemical (Ann Arbor, MI, USA). Octanoic acid was purchased from Sigma.

2.2. Site-directed mutagenesis
DNA primers were designed to convert the Asn residue at site 580 in the human COX-2 sequence to a Gln residue. The mutagenesis reaction contained pcDNA3-COX-2, sense and antisense DNA primers, dNTP mix, and Pfu Ultra HF DNA polymerase. The reaction was incubated at 95 °C for 30 s. This was followed by 16 cycles of: 95 °C for 30 s, 55 °C for 1 min, and 68 °C for 7 min, 30 s. The restriction enzyme DpnI was then added to the reaction to cleave up the original plasmid, leaving intact only plasmids containing the mutant COX-2 gene.

2.3. Transfection of COS-1 cells
One Shot TOP10 Competent E. coli cells were used to produce large quantities of plasmid containing either the wild-type or mutant COX-2 gene. Plasmids were isolated and purified using the HiSpeed Plasmid Maxi kit according to the manufacturer’s instructions. COS-1 cells were grown on 6-well plates in Dulbecco’s Modified Eagle’s Medium (DMEM), 1% fetal bovine serum (FBS) media at 37 °C. FuGENE 6 reagent was used to transiently transfect cells with either the wild-type or mutant COX-2 gene according to the manufacturer’s instructions. Cells were incubated at 37 °C for 4–5 h in the presence of the FuGENE 6/COX-2 DNA complex. Media was replaced with DMEM, 10% FBS, 4 mM L-glutamine, and antibiotics, and the cells continued their incubation.

2.4. Western blot analyses
Transfected and non-transfected COS-1 cells growing on 6-well plates were washed with ice-cold phosphate buffered saline and then lysed. The whole cell lysates were sonicated briefly and subjected to centrifugation at 14,000 × g for 5 min to remove cytoskeletal structures. Protein concentrations were determined, and cell lysate samples underwent gel electrophoresis using either 4–12% Bis-Tris NuPAGE gels or 16 cm, 7% sodium dodecyl sulfate (SDS)-polyacrylamide gels. After electrophoresis, proteins were transferred to nitrocellulose and immunostained for COX-2 protein using anti-human COX-2 polyclonal antibody. The membrane was also immunostained for the housekeeping gene β-actin. Bound antibody was detected using chemiluminescence and film. Densitometry analyses were then carried out using the software UNSCAN-IT by Silk Scientific.

2.5. ELISA for measuring PGE2 levels
Transfected and non-transfected COS-1 cells growing on 6-well plates were treated with 3 μg/ml of either AA or octanoic acid (OA) for 2 h at 37 °C, as previously described [16]. Media samples were then collected and analyzed for the presence of the downstream product PGE2 using a PGE2 EIA kit – Monoclonal and peroxide-free AA were purchased from Cayman Chemical (Ann Arbor, MI, USA). Octanoic acid was purchased from Sigma.

2.6. Statistical analysis
Using Instat 3 software, densitometry data were subjected to One-way Analysis of variance (ANOVA). Enzyme-linked immunosorbent assay (ELISA) results were also subjected to ANOVA followed by the Student–Newman–Keuls Multiple Comparisons Test.

3. Results and discussion
3.1. Mutagenesis of glycosylation site Asn580 affects glycoform expression
By replacing asparagine (Asn) with glutamine (Gln) at residue 580 of the human COX-2 gene, we effectively eliminated glycosylation at that site (Fig. 1A). As a result, COS-1 cells transfected with the mutant gene were able to express the 72 but not the 74 kDa glycoform found in cells expressing the wild-type gene. The mutation also resulted in the expression

![Image](https://example.com/image.png)
of a "new" 70 kDa glycoform, but the mechanism behind its formation is as yet unknown. Fig. 1A shows a significantly large accumulation of both the 70 and 72 kDa proteins. In short, removal of the glycosylation site appeared to increase total COX-2 protein levels. To confirm this, a timecourse experiment was conducted in which expression patterns of the glycoforms were analyzed 3, 4, and 5 days after transient transfection with either the wild-type or mutant COX-2 gene (Fig. 1B). The concentrations of the two glycoforms expressed from the mutant gene continued to be greater than those expressed from the wild-type gene, even as total COX-2 expression started to wane by Day 5. This verified that removal of the Asn\(^{580}\) glycosylation site slowed down the turnover of the COX-2 protein.

3.2. Effect of glycosylation on total COX-2 activity

To determine if the accumulation of COX-2 in cells expressing the mutant gene also resulted in an increase in total COX-2 activity, levels of the downstream end-product PGE\(_2\) were measured (Fig. 2). Cells carrying either the wild-type (WT) or mutant (MUT) COX-2 gene were treated with the COX-2 substrate AA for 2 h. PGE\(_2\), released by cells into the media, was measured using an ELISA. As Fig. 2 shows, AA-treated cells expressing the 70/72 kDa glycoforms had the greatest PGE\(_2\) levels—five times greater than the levels found in AA-treated cells expressing the 72/74 kDa glycoforms. PGE\(_2\) was also measured in untreated and cells treated with the non-substrate fatty acid, OA. As expected, PGE\(_2\) levels were extremely low in the untreated and OA-treated cell groups, and there were no significant differences between the two groups.

3.3. Effect of AA on COX-2 glycoform expression

Although the presence of AA can lead to an increase in COX-2 by indirectly up-regulating its transcription [15,26], the mutant and wild-type COX-2 gene constructs used in this study were under the control of the pcDNA3 plasmid’s CMV promoter rather than their native COX-2 promoter. Thus, the increased COX-2 activity in AA-treated cells (shown in Fig. 2) was not due to an increase in COX-2 production. However, to confirm that AA treatment had no effect on COX-2 protein synthesis, a Western blot was carried out on the same treatment groups described in Fig. 2. Fig. 3 shows that AA-treated cells produced the same level of COX-2 protein as control cells (i.e. untreated and OA-treated cells).

3.4. Conclusion

A few past studies have examined the glycosylation of COX-2, but none succeeded in determining the significance or purpose of the two COX-2 glycoforms. Though researchers found glycosylation of COX-2 at Asn\(^{23}\), Asn\(^{130}\), and Asn\(^{390}\) necessary for proper folding of COX-2 into an active, 72 kDa enzyme [23], no such function was found for the glycosylation site Asn\(^{580}\). Ours is the first study to describe a biologically significant role for the glycosylation of Asn\(^{580}\) in the COX-2 protein. Additionally, our study introduces a new regulatory mechanism for COX-2 expression. Regulation of COX-2 at the levels of transcription (reviewed in [27]) and post-transcription (i.e. mRNA stability) [28,29] has already been well-established. In fact, we previously demonstrated that AA regulates COX-2 transcription via a feed-forward mechanism in prostate cancer [15,26], most likely mediated by the EP4 prostaglandin receptor [30] and by activation of phosphatidylinositol 3-kinase (PI3K) [16]. However, regulation after protein synthesis appeared to be limited to the addition of exogenous COX-2 enzyme inhibitors (e.g. non-steroidal anti-inflammatory drugs (NSAIDs)) [1]. As our study indicates, removal of glycosylation site Asn\(^{580}\) in the human COX-2 protein leads to an increase in total COX-2 activity (as reflected by a five-fold increase in PGE\(_2\)) and an accumulation of both the 72 kDa and 70 kDa COX-2 glycoforms. Although the structure and activity level of the 70 kDa protein have yet to be determined, it is entirely possible that this glycoform contributed significantly.
to the overall increase in COX-2 activity found in the Asn\(^{380}\)-mutant cells. All these data suggest that normal turnover of COX-2 requires the conversion of the 72 kDa protein into the 74 kDa glycoform via glycosylation, indicating that regulation of COX-2 can also occur at the post-translational level. This finding may be particularly important from a therapeutic perspective since increased levels of COX-2 protein have been implicated in various pathological conditions, and glycosylation of COX-2 appears to be involved with controlling those levels.

Acknowledgements: The authors thank Dr. Timothy Hla (University of Connecticut) for the generous gift of the human COX-2 cDNA. These studies were supported by the Veterans Administration Merit Review Award and in part by the VA REAP and NASA Grants NCC-2-1361 and NAG-2-2981 awarded to M. H-F.

References